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Abstract  

Variational Mode Decomposition (VMD) is a useful tool for decomposing complex multi-component signals. 

However, one major drawback of VMD is the need to accurately determine the value of sub-signals (IMFs) before 

starting the process of segmentation. In fact, achieving optimal reconstruction of the denoised original signals 

depends on the determining optimal number of IMFs (K). This requirement poses a challenge in the capability of 

analyzing non-stationary or noisy signals. In this paper, a new approach to optimize the variational mode 

decomposition technique is proposed. This approach automatically estimates the optimal K and also effectively 

detects the characteristic frequencies associated with faulty bearings. This method is a combination of two 

algorithms which are based on cross-correlation and root mean square (RMS) statistical analysis. To confirm the 

efficacy of the proposed method, the bearing vibration dataset from the Case School of Engineering are used. 

Then, the K obtained through the proposed method are compared with other methods. The results demonstrate 

that the proposed approach exhibits superior robustness and precision when autonomously evaluating the optimal 

K for effective identification of bearing fault. 

Keywords: Bearing fault diagnosis, cross correlation, root mean square, vibration signal, variational mode decomposition. 
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OVMD – Optimized Variational Mode Decomposition; 

RMS – Root Mean Square;  

STFT – Short Time Fourier Transform;  

SDA – Signal Difference Average;  

 
 

SVM – Support Vector Machine;  

VMD – Variational Mode Decomposition; 
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1. INTRODUCTION 

 

Bearing represent a significant concern in 

rotating machinery, as a majority of mechanical 

failures are attributed to bearing-related issues. 

Consequently, early detection and analysis of 

bearing faults have become a major focus of 

scientific research in recent decades. Vibration 

signal analysis is the most commonly used technique 

in industry, with approximately 75% of machine 

diagnostics relying on these signals [1]. However, 

the signals obtained from these machines are often 

complex comprising multiple components. 
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To overcome the complexity of these signals and 

improve the effectiveness of diagnosing rotating 

machinery, various signal decomposition methods 

have been employed in the time-frequency domain. 

These methods include Short Time Fourier 

Transform (STFT) [2,3], Wavelet Transform (WT) 

[4], Empirical Mode Decomposition (EMD) [5], 

Ensemble Empirical Mode Decomposition (EEMD) 

[6], and Local Mean Decomposition (LMD) [7,8]. 

However, these methods are often challenged by 

different issues such as mode mixing and end effects 

[9]. YU et al. [10] proposed a bearing fault diagnosis 

method based on Empirical Mode Decomposition 

(EMD) and Hilbert Transform (HT) techniques. 

They utilized orthogonal Wavelet Transform bases 

to translate vibration signals into a time-scale 

representation. The results show that the proposed 

method can extract the fault characteristics of roller 

bearings with high precision. 

Recently, the Variational Mode Decomposition 

(VMD) technique, introduced by Dragomiretskiy 

and Zosso [11], has gained prominence. VMD can 

decompose a multi-component signal into a set of 

intrinsic mode functions (IMFs). One of the main 

challenges in the VMD algorithm lies in determining 

the optimal value of K. Nevertheless, in industrial 

settings, estimating the appropriate K can present 

significant challenges due to elevated background 

noise, irregular pulse patterns, and vibrations 

originating from various internal components. 

Therefore, research efforts have been directed 

towards pre-determining and optimizing the K for 

enhanced diagnostic accuracy. Developing robust 

methodologies to overcome the challenges 

associated with estimating the K in industrial 

environments.  

To enhance the operational efficacy of VMD 

technique, several additional approaches have been 

proposed. Isham et al. [12] introduced a mode 

determination technique based on Signal Difference 

Average (SDA) to capture similarities in amplitudes 

between the decomposed modes and the original 

signal. Yang H, Liu and Zhang [13] addressed the 

effects of over-segmentation and under-

segmentation on VMD results. Ni et al. [14] 

proposed a novel approach (FIVMD), demonstrating 

its potential in bearing fault detection. Liu et al. [15] 

developed a method based on Cross Correlation and 

Teager Energy Operator (IVMD-TEO). Zheng et al. 

[16] developed a method in which the selection of 

VMD modes is based on demodulation envelope, 

and it is used for bearing faults diagnosis.  

Moreover, Tang et al. [17] used the Support 

Vector Machine method to optimize VMD mode 

number, showing the effectiveness of their approach 

in analyzing rolling bearing faults. LI et al. [18] 

present an optimized VMD based on Envelope 

Kurtosis (EK) and Frequency Band Entropy (FBE), 

enabling the optimal selection of IMFs. This 

approach is used for bearing fault diagnosis with 

high feasibility. WANG, XU and LIU [19] present 

bearing fault diagnosis based on Improved VMD 

(IVMD) and Deep Convolutional Neural Network 

(DCNN). SHI et al. [20] presented a new diagnosis 

method called VMD – Scale Space Based hyergram. 

Liu, Wu and Zhen [21] introduced the Maximum 

Central Frequency Observation method (MCFO) for 

estimating the value of K, while Wu et al. [22] 

proposed the Center Frequency Statistical Analysis 

technique (CFSA) to accurately estimate the value of 

K. Despite these advancements, some limitations 

persist, such as inadequate consideration of 

independence between IMF components and the 

energy level of each IMF.  

To address these limitations, this paper 

introduces a novel approach for bearing fault 

detection that consists of two algorithms. The first 

algorithm ensures the independence of all IMFs 

components within their respective frequency bands 

by utilizing Cross-Correlation coefficients. The 

second algorithm, based on Root Mean Squared 

(RMS) histogram analysis, selects IMFs with 

relevant information (energy level) to eliminate 

noise effectively. The experimental findings 

demonstrate that the suggested method overcomes 

the limitations of previous approaches, yielding 

robustness, accuracy, and automatic calculation of 

K. Additionally, the proposed method effectively 

resolves mode mixing and over-decomposition 

problems. Applied to bearing vibration diagnosis, 

the proposed method not only detects defects 

automatically but also identifies the frequencies 

characteristic of each defect type. 

The remainder of the paper is organized as 

follows: In Section 2, the theory behind the proposed 

method is presented. Section 3 provides comparative 

studies with MCFO and CFSA methods. Section 4 

includes experimental validation of the proposed 

method. Finally, Conclusions are given in Section 5. 

 

2. METHODS AND MATERIALS 

 

2.1. Bearing vibration dataset description 

 

      The Electrical Engineering Laboratory of 

CWRU provided the database [23], based on the 

experimental test rig presented in Figure 1 which has 

been used in this study. 

 

 
 

Fig. 1. Experimental test rig [23]. 

       

      The experimental setup consists of a 2 hp motor, 

a torque sensor\/encoder, a dynamometer, and 

control electronics. In this study, the vibration 



 

 

3 

signals from the drive end bearing have been 

measured. The specific type of rolling bearing used 

in this application is the SKF 6205-2RS JEM. Below 

are the main characteristics of the healthy and faulty 

bearing vibration signals from the CWRU dataset, 

which have been selected for this study [23]: 

• The vibration signals are collected at 

frequency sampling equal to 48,000 Hz and 

at an operating speed of 1772 rpm. 

• Both healthy and faulty signals have been 

divided into windows of 25ms duration for 

each recording. 

• For the faulty state signals, the fault 

diameter is 0.177 mm. 

      Rolling elements generate shock impulses when 

they encounter localized faults within the inner race 

with a specific frequency, often referred to as the 

fault characteristic frequency. 
 

2.2. Variational mode decomposition algorithm 

 

The VMD method can decompose an input signal 

into an ensemble of intrinsic Mode Functions (IMFs) 

that can be used to reproduce the original signal. 

Each IMF has a characteristic center frequency. The 

resulting constrained variational problem is the 

following: 

 

𝑚𝑖𝑛𝑢𝑘  𝜔𝑘
{∑ ‖𝜕𝑡 [(𝛿(𝑡) +

𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘 }      

                              s. t ∑ 𝑢𝑘 = 𝑓𝑘                            (1) 

      The augmented Lagrangian function has been 

used to solve minimization problem of equation (1).  

𝐿({𝑢𝑘} {𝜔𝑘}, 𝜆) ≔  𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑘𝑡‖

2

2

𝑘

 

+ ‖𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ‖2
2 + 〈𝜆(𝑡), 𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 〉                   (2) 

      The resulting IMFs and their corresponding 

center frequencies are presented as follows:  

     𝑢𝑘
𝑛+1̂(𝜔) =

𝑓(𝜔)̂−∑ 𝑢𝑘
𝑛+1̂(𝜔)𝑖<𝑘 −∑ 𝑢𝑘

𝑛̂(𝜔)𝑖>𝑘 −
𝜆𝑛(𝜔)̂

2

1+2𝛼(𝜔−𝜔𝑘
𝑛)2            (3) 

       

                   𝜔𝑘
𝑛+1 =

∫ 𝜔
+∞

0
|𝑢𝑘

𝑛+1̂(𝜔)|
2

𝑑𝜔

∫ |𝑢𝑘
𝑛+1̂(𝜔)|

2
𝑑𝜔

+∞

0

                              (4) 

      VMD algorithm details can be found in [11]. 
 

2.3.  VMD K-value effect in bearing vibration 

analysis 

      The over-decomposition and under-

decomposition occur when the value of K is greater 

or less than the actual harmonic number in the input 

signal, respectively. The aim of this section is to 

demonstrate and explain the issues of VMD in the 

decomposition results, such as over-decomposition 

and mode mixing. Therefore, in the faulty state of the 

bearing, the modes have been extracted using the 

VMD algorithm. To this end, when the value of K 

equals 7, the problem of over-decomposition can be 

clearly observed in Figure 2. 

     One can observe that IMF4, IMF6, and IMF7 

have very small amplitude levels over their 

frequency bandwidth compared to IMF1, IMF2, 

IMF3, and IMF5. Hence, it can be concluded that 

IMF4, IMF6, and IMF7 are over-decomposed modes 

and can be regarded as integral components of the 

residual signal (noise). This noise can be eliminated 

without any loss of valuable information. 

 

 

 
Fig. 2. Modes extracted using VMD for faulty bearing in 

frequency domain with K = 7. 

 

      In the healthy state of the bearing, with the same 

mode number K=7, both over-decomposition and 

mode mixing are clearly observed in Figure 3. 

Specifically, IMF5, IMF6, and IMF7 have very 

small amplitude levels over their frequency 

bandwidth compared to IMF1, IMF2, IMF3, and 

IMF4. Hence, these three modes are considered as 

part of the residual signal and can be dropped 

without any loss of valuable information (noise). 

However, IMF3 and IMF4 have the same center 

frequency with significant amplitudes, indicating the 

occurrence of the overlapping problem (mode 

mixing). It can be concluded that K=7 is not optimal 

and only 3 modes (IMF1, IMF2, and IMF3) should 

be considered in this case. This emphasizes the 

importance of K in the accuracy of the 

decomposition. 
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Fig. 3. Modes extracted using VMD for healthy bearing 

in frequency domain with K= 7. 

 

2.4. The proposed method 

 

      To achieve an automated implementation of the 

proposed method, it is necessary to enhance the 

VMD algorithm by incorporating novel constraints. 

The proposed method includes two algorithms. The 

first one, which improves VMD based on Cross-

Correlation Coefficients, has been used to ensure 

that all IMFs are independent in the frequency band. 

Therefore, three correlation conditions are 

implemented to automatically estimate the optimal 

value of K for any input signal and overcome VMD 

limitations. The first condition ensures that there is 

no over-decomposition of the residual signal. In fact, 

when the residue has no more important information, 

the decomposition stops. However, the second and 

third conditions are primarily added to avoid the 

problem of mode duplication.  

     The second algorithm, based on the Root Mean 

Square (RMS) method, has been used to select IMFs 

with relevant information (energy level).  

     For the first algorithm, three conditions are 

applied as following: 

 

• The Correlation Coefficient between the input 

signal and the residual signal must be less than 

a threshold value of 0.05, as determined through 

experimental evaluation. 

• The Correlation Coefficient of each calculated 

IMFi (ith Intrinsic Mode Function) with its next 

IMFi+1 must be lower than a threshold value of 

0.1, evaluated experimentally. 

• Finally, the correlation of each IMFi with the 

original signal must be greater than the 

correlation of the IMFi with its next IMFi+1. 

 
      Following are the implementation steps of this 

algorithm: 

 

  Algorithm 1: VMD optimization based on CC 

(1) Initialize k=2; 

(2) Do1: K= k + 1; 

(3) Initialize{𝑢̂𝑘
1}, {𝜔𝑘

1}, 𝜆̂1, 𝑛 = 0 

(4) Do2: n = n + 1; 

(5)     for k =1: K, 

          Update 𝑢̂𝑘
𝑛+1and 𝜔𝑘

𝑛+1: 

 𝑢̂𝑘
𝑛+1(𝜔) =

𝑓̂(𝜔)−∑  𝑢𝑘
𝑛+1(𝜔)𝑖<𝑘 −∑  𝑢𝑘

𝑛(𝜔)𝑖>𝑘 −
𝜆̂

𝑛
(𝜔)

2

1+2𝛼(𝜔−𝜔𝑘
𝑛)

2                    

          𝜔𝑘
𝑛+1 =

∫ 𝜔
+∞

0
|𝑢̂𝑘

𝑛+1(𝜔)|
2

𝑑𝜔

∫ |𝑢̂𝑘
𝑛+1(𝜔)|

2
𝑑𝜔

+∞

0

                                         

(6) Dual ascent: 

               𝜆̂𝑛+1(𝜔) = 𝜆̂𝑛(𝜔) + 𝜏( 𝑓(𝜔) − ∑ 𝑢̂𝑘
𝑛+1(𝜔))𝑘 ;                    

(7) repeat2 steps (4)-(6), until 

∑
‖𝑢̂𝑘

𝑛+1−𝑢̂𝑘
𝑛‖

2

2

‖𝑢̂𝑘
𝑛‖

2

2 < 𝜖𝑘 ; 

(8)       for k=1: K, 

              𝑟1 = 𝑟(𝑢𝑖 , 𝑢𝑖+1) 
                             𝑟2 = 𝑟(𝑢𝑖 , 𝑓) 

 if 𝑟1 > 0.1  stop decomposition and 

number of modes is K-1;        

 elif 𝑟1 > 𝑟2 stop decomposition and 

number of modes is K-1; 

(9) repeat1 steps (2)-(8), until 

          |𝑟(𝑓 − ∑ 𝑢𝑘 , 𝑓)| <  𝜎, with 𝜎 = 0.09. 

      The aim of the second algorithm IVMD is to 

compare the amplitudes of each IMF by calculating 

their RMS values. This method calculates the 

average power of each IMF over a given period and 

represents a useful tool for comparing the energy of 

different signals or assessing the signal's power. 

      Therefore, only IMFs that have an energy level 

above the computed RMS threshold are selected. It’s 

assumed that the omitted modes lack sufficient 

information to influence the process of fault 

detection and identification. The process of selecting 

useful IMFs within the original signal can be 

summarized as follows: 

 



 

 

5 

1. Calculate RMS for each IMF. 

2.. Estimate the expected amplitude percentage of 

each mode compared to the IMF with the largest 

RMS value. 

3. Calculate the threshold (noted 𝛾). 

4. Select the IMFs that have higher RMS value than 

the threshold  

 

     Following are the implementation steps of the 

second algorithm: 

      

Algorithm 2: IMFs selection based on RMS 

(1)     for k = 1: K, 

     𝑟𝑚𝑠𝑘 = √
(𝐼𝑀𝐹𝑘[0]2+𝐼𝑀𝐹𝑘[1]2+𝐼𝑀𝐹𝑘[2]2+⋯+𝐼𝑀𝐹𝑘[𝑛]2

𝑛
 

(2) Find 𝑟𝑚𝑠𝑚𝑎𝑥  the largest value among rms values; 

(3) Estimate the expected amplitude percentage of 

each mode; 

𝑟𝑚𝑠𝑘(%) =
𝑟𝑚𝑠𝑘×100

𝑟𝑚𝑠𝑚𝑎𝑥 
 ; 

(4) Calculate the average; 

   average = ∑
𝑟𝑚𝑠𝑘(%)

𝐾𝑘 ; 

(5) Calculate the threshold; 

𝛾 = average × 0.8 ; 

(6)      for k=1: K, 

             if  𝑟𝑚𝑠𝒌(%) > 𝛾 , IMFk is a selected mode; 

             else, drop off all the remained IMFs; 

 

      The Optimized VMD algorithm flowchart is 

presented in Fig 5. 

       

3. COMPARATIVE EXAMINATION 

BETWEEN PROPOSED APPROACH, 

MCFO AND CFSA METHODS IN 

BEARING VIBRATION ANALYSIS 

 

To validate the effectiveness of the proposed 

method in analyzing bearing vibration, both the 

Maximum Center Frequency Observation (MCFO) 

and Center Frequency Statistical Analysis (CFSA) 

algorithms have been implemented in this study for 

comparison purposes. 

 

3.1. MCFO method 

 

      The MCFO approach relies on examining the 

pattern displayed by the highest center frequencies. 

The center frequency of each IMF gradually 

increases as the mode number increments. The point 

at which the maximum center frequencies exhibit 

stability corresponds to the identification of the 

optimal value of K [21]. The application of this 

method to the simulated signal equation (5).  

 
        𝑓(𝑡) =  0.1 ∗ 𝑐𝑜𝑠(2𝜋100𝑡 ) + 2 ∗ 𝑐𝑜𝑠(2𝜋350𝑡 ) +

 0.4𝑐𝑜𝑠(2𝜋400𝑡 ) + 𝑐𝑜𝑠(2𝜋800𝑡 ) + 𝑐𝑜𝑠(2𝜋950𝑡 )              (5) 

 

    The optimal number of modes in this case should 

be K=5    

 

 
Fig. 4. MCFO of simulated signal f(t). 

 

From Figure 4 it can be observed that as the 

number of modes increase, the corresponding center 

frequencies gradually increases and tend to be 

stabilize at K=5, Therefore, the optimal value of K is 

5. 

 

3.2. CFSA method 

 

    The main idea behind the CFSA method is to 

count the frequencies in the histogram that surpass 

the mean value [22]. This selected number is 

considered as the optimal mode number. The 

implementation steps of the algorithm are as follows: 

 

Algorithm 3: CFSA algorithm 

(1)  Initialize VMD parameters ( 𝑘, 𝛼). 

(2) Extract IMFs of the input signal using VMD. 

(3) Estimate the center frequency of each IMF. 

(4) Plot the histogram of center frequencies. 

(5) Determine the mean of central frequencies and 

count number (N) exceeding the average. 

(6) repeat steps (1)-(5) with (k= 𝑘 + 1), until the 

incrementation of the count number has ceased, the 

decomposition is stopped, the optimal value of IMF 

is N. 
 

3.3. Results and discussion 

 

    A Python program for the MCFO and CFSA 

methods for comparative analysis with the proposed 

approach have been developed from scratch. 

   First, the CFSA algorithm is applied to the healthy 

signal, and the resulting center frequency histogram 

is shown in Figure 6. Dominant center frequencies 

that are above the average count of 3.66 are: 113 Hz, 

1044 Hz, 1297 Hz, 2099 Hz, and 4889 Hz. 

According to the CFSA method, the original signal 

has only 5 optimal IMFs as main components. In 

faulty state condition, the center frequency 

histogram is shown in Figure 7, with an average 

count of 4.88. The dominant center frequencies are: 
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325 Hz, 666 Hz, 845 Hz, and 2075 Hz. Hence, there 

are four frequencies, thus 4 IMFs, that can be 

considered as optimal components of the faulty 

original signal. 

 
Fig. 6. Center Frequency Histogram for healthy state 

(Counts average = 3.66). 

 

 
Fig. 7. Center Frequency Histogram for faulty state 

(Counts average = 4.88). 

 

    The results of the application of the MCFO 

method are shown in Figures 8 and 9, for healthy and 

faulty signals respectively. As seen in Figure 8, the 

center frequency stabilizes when K=3, indicating 

that the optimal number of IMF is 3. However, in 

Figure 9, the maximum center frequency tends to 

stabilize from K=6, indicating that the optimal 

number of IMFs is 6. 

 

 
Fig. 8. MCFA trend of bearing vibration signal in healthy 

state. 

  
Fig. 9. MCFA trend of bearing vibration signal in faulty 

state. 

 

   The proposed method is used to process both 

healthy and faulty states of the signal, and the 

computed value of K for all previous methods are 

summarized in Table 1. 

 
Table 1.the value of K for each method 

 Healthy 

state 

 Faulty state 

MCFO K=3  K=6 

CFSA K=5  K=4 

Proposed 

approach 
K=3  K=4 

 

     For the healthy state, both MSFO and the 

proposed method give K=3. However, the CFSA 

method indicates that the value of K is 5. Figure 10 

presents the output of the first algorithm (VMD 

optimization based on cross-correlation), showing 

effective suppression of modal aliasing and adaptive 

separation of different frequency bands. However, 

the amplitudes of modes 4 and 5 are very small 

compared to modes 1, 2, and 3. This means that the 

two former modes have very limited useful 

information. Based on the RMS results using second 

algorithm in Figure 11, it can conclude that IMF4 

and IMF5 must be dropped because their energy 

level is under the threshold of 48.67%. Therefore, 

the selected IMFs are mode 1, mode 2, and mode 3. 

The remaining modes have to be dropped, 

confirming that the optimal value of K extracted by 

the proposed approach must be equal to 3, as shown 

in Figure 12. 

 

 

 

 

 
Fig. 10. The output of first algorithm (VMD optimization 

based on cross correlation) in healthy state.



 

 

 
 

  
Fig. 5. The method presented in this paper. 

                                                                  

 

      

 
Fig. 11. The RMS representation of each mode with 

threshold =48.67%.  

 
Fig. 12. Modes selected by the proposed method for 

healthy bearing vibration signal in frequency domain.  
 

    For the faulty state, both CFSA and the proposed 

approach give a K=4. However, the MSFO method 

indicates that the value of K is 6.     Figure 13 presents 

the decomposition result of the first algorithm (VMD 

optimization based on cross correlation), where it 

can be observed that the amplitudes of modes 3 and 

6 are very small compared to modes 1, 2, 4, and 5, 

indicating that the two former modes have very 

limited useful information. 

 

           
Fig. 13. The output of first algorithm (VMD optimization 

based on cross correlation) in faulty state.   
 

    Indeed, based on the RMS representation of each 

mode (%) in Figure 14, it can be concluded that 

IMF3 and IMF6 energies are below the energy 

threshold level of 57.66%. So, they must be 
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considered as part of the residual signal. This means 

that the optimal value of K extracted by our approach 

is equal to 4. Therefore, the selected IMFs are modes 

1, 2, 4, and 5. The output of the proposed algorithm 

for the faulty state is presented in Figure 15. 

 
 

 
Fig. 14. The RMS representation of each mode with 

threshold =57.66%. 

 
Fig. 15. Modes selected by the proposed method for 

faulty bearing vibration signal in frequency domain. 

 

4. OVMD FOR BEARING FAULT 

DETECTION AND IDENTIFICATION 

 

    The objective of this section is to verify the 

robustness of the proposed method for bearing fault 

detection and identification. Furthermore, a key 

advantage of this method is that the decomposition 

process and the selection of the optimal value of K 

are performed automatically, eliminating the 

requirement for human intervention, as explained in 

the previous section, analyzing bearing vibration of 

healthy and faulty (Inner race fault) signals.  

    The characteristic frequency of inner race fault 

can be represented as: 

 

 𝑓𝑖 = 𝐵𝑃𝐹𝐼 × 𝑆ℎ𝑎𝑓𝑡 𝑠𝑝𝑒𝑒𝑑(𝑅𝑃𝑆) = 159.48 Hz         (6) 

 
Table 2. Bearing details and fault frequencies [24] 

          Fault frequencies (multiple of shaft speed) 

BPFI BPFO FTF BSF 

5.415 3.585 0.3983 2.357 

 

    The decomposed results of the healthy and faulty 

bearing signals are shown in Figure 16. It can be 

concluded that the intensities of IMFs in the faulty 

state have increased significantly compared to the 

healthy state. Therefore, the dissimilarities between 

the faulty and healthy states can be easily 

distinguished. The characteristic frequency of the 

inner race fault f(i) = 159.48 Hz, as well as its 

harmonics (2fi, 4fi, 6fi, 8fi), are clearly determined. 

Hence, the inner race fault has not only been detected 

but also identified, confirming the feasibility and 

effectiveness of the proposed method. 
 

Table 3. Inner race characteristic frequency and its 

harmonics 

 Fi 2Fi 4Fi     6Fi 8Fi 

Amplitudes 

𝑚. 𝑠−2 

250    380 645     345 310 

Frequencies 
Hz 

159.48  318.96 637.92    956.88 1278.84 

 

 
(a) 

 
  (b) 

Fig. 16. IMFs selection using OVMD for (a) healthy 

vibration and (b) Inner race fault vibration. 
 

    Moreover, to demonstrate the efficacy of the 

proposed method, we can use it to analyze additional 

bearing faults, such as outer race and rolling element 

(ball) faults. From the same Experimental test rig, 

CWRU dataset [23], the faulty outer race and rolling 

element vibration signals are presented in Figure 17. 

 

 

 
Fig. 17. Outer race and ball bearing vibration signals in 

Time Domaine. 

 

    The results of the application of the proposed 

method on faulty outer race vibration is shown in 

Figures 18, 19 and 20. 

    The characteristic frequency of outer race fault 

can be represented as: 

 

 𝑓𝑖 = 𝐵𝑃𝐹𝑂 × 𝑆ℎ𝑎𝑓𝑡 𝑠𝑝𝑒𝑒𝑑(𝑅𝑃𝑆) = 105.87 Hz       (7) 

 

    The characteristic frequency of the outer race fault 

f(i) = 105.87 Hz, as well as its harmonics (2fi, 3fi,5fi, 

6fi, 7fi), are clearly determined and presented in 

Table 4. 

 



 

 

9 

 

 
Fig. 18. The output of first algorithm (VMD optimization 

based on cross correlation) in outer race vibration signal. 

 

 
Fig. 19. The RMS representation of each mode with 

threshold =56.09%.  

 
Fig. 20. IMFs selection using OVMD for outer race fault 

vibration. 

 
Table 4. Outer race characteristic frequency and its 

harmonics 

    

 

    The results of the application of the proposed 

method on faulty ball bearing vibration is shown in 

Figures 21, 22 and 23. 

    The characteristic frequency of Ball bearing fault 

can be represented as: 

 

 𝑓𝑖 = 𝐵𝑆𝐹 × 𝑆ℎ𝑎𝑓𝑡 𝑠𝑝𝑒𝑒𝑑(𝑅𝑃𝑆) = 69.61 Hz              (8) 

 

The characteristic frequency of the Ball bearing fault 

f(i) = 69.61 Hz, as well as its harmonics (2fi, 

3fi,4fi,5fi, 7fi, 8fi, 9fi, 10fi), are clearly determined 

and presented in Table 5. 

 

 

 
Fig. 21. The output of first algorithm (VMD optimization 

based on cross correlation) in ball vibration fault. 

  

 
Fig. 22. The RMS representation of each mode with 

threshold =56.96%.  

 

 
Fig. 23. IMFs selection using OVMD for ball vibration 

fault. 

 

Table 5. The characteristic frequency of the Ball bearing 

fault and its harmonics 

 

    The results show that the proposed method can 

automatically and significantly select the optimal 

modes for inner race, outer race and ball bearing 

vibrations. Moreover, it identifies the characteristic 

frequencies of each. 

 
5. CONCLUSION 

 

    This paper introduces a novel method that 

enhances the computation of VMD modes that is 

based on the combination of Cross-Correlation and 

the RMS algorithms. Through its application to 

 Fi 2Fi 3Fi 4Fi 5Fi  

Amplitudes 

𝑚. 𝑠−2 

65.43    111 56.55 64.95 41.55  

Frequencies 

Hz 

69.61 139.22 208.83 278.44 348.05  

 7Fi 8Fi 9Fi 10Fi  

Amplitudes 

𝑚. 𝑠−2 

64.86    382.4 382.5 110.56  

Frequencies 

Hz 

487.27  556.88 626.49 696.1  

 Fi 2Fi 3Fi 5Fi 6Fi 7Fi  

Amplitudes 

𝑚. 𝑠−2 

501.03    94.4 175.56 325 960 685.

33 
 

Frequencies 

Hz 

105.87  211.74 317.61 529.35 635.22 741.

09 
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processing vibration signals from rolling bearings, 

the efficacy of the proposed method becomes 

evident. When compared to the MCFO and CFSA 

methods, it is more efficient, robust, and accurate.    

This method determines the optimal value of K for 

processing real-world bearing vibration signals, as 

extracted from the CWRU dataset for Inner race, 

outer race and ball bearing faults detection and 

characteristic frequency identification. This 

showcases its potential for on-the-fly fault diagnosis 

and identification within industrial settings. Future 

research will extend the utility of this method to 

analyzing various types of vibration signals, such as 

gearboxes, rotors, and stator vibrations. 
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